已有1条答案
学生在学习函数的时候一定要牢牢把握函数的概念,所谓函数就是两个变量之间的关系,当一个量发生变化时另一个量也随之发生变化,一个量的变化引起了领一个量的变化。熟悉每一章节的知识点,熟练背诵记忆定义、定理、公式、运算法则等基本知识。
数学函数零基础怎么学?
1、首先就是熟悉坐标系
在学习过坐标轴以后,我们在初二阶段开始学习坐标系,坐标系是所有函数的容器,在所有的函数里面需要坐标系来体现的。
2、学会表示点
另外需要学会表示点,学会利用横纵坐标来表示点的位置和特点。学会表示点的位置,点的移动和点的特性。
3、理解函数概念
理解自变量和应变量的概念进而理解函数的概念,函数的概念理解了,理解了函数的概念才可以进行函数题的计算。
4、数学基础知识
理解和记忆数学基础知识是学好数学的前提。理解就是用自己的话去解释事物的意义,同样的数学,在不同学生的头脑中存在的形态是不一样的。
所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。
对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
5、函数的定义
给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域C和对应法则f。
(初中)数学函数学习方法:
一、注重“类比”思想
不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法。
初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。
二、注重自变量的取值范围
自变量的取值范围,是解函数问题的难点和考点。正确求出自变量取值范围,正确理解问题,并化归为解不等式或不等式组。这需要学生掌握函数的思想,不等式的实际应用,全面考虑取值的实际意义。
三、注重“数形结合”思想
数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。
函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的“数形结合”。函数图象就是将变化抽象的函数“拍照”下来研究的有效工具,函数教学离不开函数图象的研究。
四、注重实际应用问题
学习函数的主要目的之一就是在复杂的实际生活中建立有效的函数模型,利用函数的知识解决问题。这也是新课标所倡导的学习,因此新教材大力倡导函数与实际的应用。