已有1条答案
到了高中,知识点很多,需要理解、分析的要点很多,题目的综合性较大,这就给仍然按照初中学习物理的方法继续学习物理的学生带来了冲击,所以掌握一定的学习方法是很多孩子需要的。
高中物理思想方法有哪些?
1.理想模型法:为了便于进行物理研究或物理教学而建立的一种抽象的理想客体或理想物理过程,突出了事物的主要因素、忽略了事物的次要因素。理想模型可分为对象模型(如质点、点电荷、理想变压器等)、条件模型(如光滑表面、轻杆、轻绳、匀强电场、匀强磁场等)和过程模型(在空气中自由下落的物体、抛体运动、匀速直线运动、匀速圆周运动、恒定电流等)
2.极限思维法:就是人们把所研究的问题外推到极端情况(或理想状态),通过推理而得出结论的过程,在用极限思维法处理物理问题时,通常是将参量的一般变化,推到极限值,即无限大、零值、临界值和特定值的条件下进行分析和讨论。如公式v=Δx/Δt中,当△t→0时,v是瞬时速度。
3.理想实验法:也叫做实验推理法,就是在物理实验的基础上,加上合理的科学的推理得出结论的方法就叫做理想实验法,这也是一种常用的科学方法。如伽利略斜面实验、推导出牛顿第一定律等。
4.微元法:微元法是指在处理问题时,从对事物的极小部分(微元)分析入手,达到解决事物整体目的的方法。它在解决物理学问题时很常用,思想就是“化整为零”,先分析“微元”,再通过“微元”分析整体。
5.比值定义法:就是用两个基本物理量的“比”来定义一个新的物理量的方法,特点是:A=B/C,但A与B、C均无关。如=a=△v/△t、E=F/q、C=Q/U、I=q/t、R=U/I、B=F/IL、ρ=m/V等。
6.放大法:在物理现象或待测物理量十分微小的情况下,把物理现象或待测物理量按照一定规律放大后再进行观察和测量,这种方法称为放大法,常见的方式有机械放大、电放大、光放大。
7.控制变量法:决定某一个现象的产生和变化的因素很多,为了弄清事物变化的原因和规律,必须设法把其中的一个或几个因素用人为的方法控制起来,使它保持不变,研究其他两个变量之间的关系,这种方法就是控制变量法。比如探究加速度与力质量的关系,就用了控制变量法。
8.等效替代法:在研究物理问题时,有时为了使问题简化,常用一个物理量来代替其他所有物理量,但不会改变物理效果。如用合力替代各个分力,用总电阻替代各部分电阻等。
9.类比法:也叫“比较类推法”,是指由一类事物所具有的某种属性,可以推测与其类似的事物也应具有这种属性的推理方法。其结论必须由实验来检验,类比对象间共有的属性越多,则类比结论的可靠性越大。如研究电场力做功时,与重力做功进行类比;认识电流时,用水流进行类比;认识电压时用水压进行类比。
高中物理学习建议:
1.解题规范
高考越来越重视解题规范,体现在物理学科中就是文字说明。解一道题不是列出公式,得出答案就可以的,必须标明步骤,说明用的是什么定理,为什么能用这个定理,有时还需要说明物体在特殊时刻的特殊状态。这样既让老师一目了然,又有利于理清自己的思路,还方便检查,最重要的是能帮助我们在分步骤评分的评分标准中少丢几分。
2.大胆猜想
物理题目常常是假想出的理想情况,几乎都可以用我们学过的知识来解释,所以当看到一道题目的背景很陌生时,就像今年高考物理的压轴题,不要慌了手脚。在最后的20分钟左右的时间里要保持沉着冷静,根据给出的物理量和物理关系,把有关的公式都列出来,大胆地猜想磁场的势能与重力场的势能是怎样复合的,取最值的情况是怎样的,充分利用图像提供的变化规律和数据,在没有完全理解题目的情况下多得几分是完全有可能的。
3.观察生活
物理研究物体的运动规律,很多最基本的认识可以通过自己平时对生活的细致观察逐渐积累起来,而这些生活中的常识、现象会经常在题目中出现,丰富的生活经验会在你不经意间发挥作用。比如,你仔细体会过坐电梯在加速减速时的压力变化吗?这对你理解视重、超重、失重这些概念很有帮助。你考虑过自行车的主动轮和从动轮的区别吗?你观察过发廊门口的旋转灯柱吗?你尝试过把杯子倒扣在水里观察杯内外水面的变化吗?我觉得物理学习也需要一种感觉,这就是凭经验积累起的直觉。
4.模型归类
做过一定量的物理题目之后,会发现很多题目其实思考方法是一样的,我们需要按物理模型进行分类,用一套方法解一类题目。例如宏观的行星运动和微观的电荷在磁场中的偏转都属于匀速圆周运动,关键都是找出什么力提供了向心力;此外还有杠杆类的题目,要想象出力矩平衡的特殊情况,还有关于汽车启动问题的考虑方法其实同样适用于起重机吊重物等等。物理不需要做很多题目,能够判断出物理模型,将方法对号入座,就已经成功了一半
5.知识分层
通常进入高三后,老师一定会帮我们梳理知识结构,物理的知识不单纯是按板块分的,更重要是按层次分的。比如,力学知识从基础到最高级可以这样分:物体的受力分析和运动公式,牛顿三大定律(尤其是牛顿第二定律),动能定理和动量定理,机械能守恒定律和动量守恒定律,能量守恒定律。越高级的知识越具有一般性,通常高考中关于力学、电学、能量转化的综合性问题,需要用到各个层次的知识。这也提醒我们,当遇到一道大题做不出或过程繁杂时,不妨换个层次考虑问题。